next up previous contents index
Next: ERFC Up: A. Function Reference Previous: EOMONTH   Contents   Index


ERF

Syntax: ERF(L[, U])

L = Lower bound for integrating ERF, L$>$=0
U = (Optional) Upper bound for integrating ERF

ERF returns the error function integrated between L and U. The function is given by:

\begin{displaymath}
\frac{2}{\pi} \int_L^U e^{-t^2}dt = \mbox{\it ERF(U)} - \mbox{\it ERF(L)}
\end{displaymath}

If U is omitted, ERF integrates between 0 and L:

\begin{displaymath}
\frac{2}{\pi} \int_0^L e^{-t^2}dt
\end{displaymath}

Examples:

ERF(1) = 0.8427

ERF(0.35) = 0.3794

ERF(0.35, 0.89) = 0.4125

Excel function: N/A


next up previous contents index
Next: ERFC Up: A. Function Reference Previous: EOMONTH   Contents   Index
SpreadScript User's Guide, Version 1.2
Grey Trout Software
02 March 2003