Syntax: PLS(X, Y, N)
X = a range representing a row or column vector of
independent variable values
Y = a range representing a row or column vector of
dependent variable values
N = polynomial degree (in the range 1 to 10)
PLS analyzes the least squares polynomial model.
Given the Nth degree polynomial model:
Example:
Matrix A1..C4 =
A | B | C | |
1 | 0 | 0 | 1 |
---|---|---|---|
2 | 1 | 1 | 1 |
3 | 4 | 2 | 1 |
4 | 9 | 3 | 1 |
Matrix D1..D4 =
D | |
1 | 3 |
---|---|
2 | 5 |
3 | 11 |
4 | 18 |
PLS(B1..B4, D1..D4, 2) =
1.25 | 1.35 | 2.85 | 0.45 |
0.34 | 1.05 | 0.65 | 1.00 |
3.73 | 1.29 | 4.36 | 151.44 |
0.17 | 0.42 | 0.14 | 0.06 |
The above result displays only 2 decimal places and is exactly equivalent to LLS(A1..C4, D1..D4)
Excel function: N/A